Product Information Report Hardflex[®] Band Saw Blades

Overview

Hardflex® Band Saw Blades are great all-purpose blades for cutting almost any metal. Cuts tough material like stainless steel. Works equally well on solids, tubing and structural shapes.

Features/Benefits

Bi-Metal Construction

Hardflex[®] blades are built with the best grades of saw steel and the most exacting engineering standards in the industry. The 8% cobalt tooth edge stands up to high temperatures, allowing faster cutting and reduced edge wear. The alloy back absorbs shock for a longer life. This combination results in a safer cutting tool that is virtually shatterproof.

Variable Tooth Pitch

We vary the size of the teeth and the depth of the gullets over the length of the blade. This variation brings teeth into the work at constantly changing angles, breaking up the harmonics encountered in sawing. This lets you cut faster and produce a smoother finish than you can with conventional blades. With less harmonic buildup you also cut quieter which lowers operator fatigue - a major cause of accidents. The varying gullets also give added protection against tooth stripping.

Decreasing Blade Failure Three significant ways to decrease blade failure Use a good quality cutting fluid • Break in blade properly • Run the machine at faster band speeds

Applications

• Low speed – Stainless steel and other tough steels, electric cable and plastics

• High speed - Brass, aluminum, mild steel, angle iron, galvanized pipe, copper, bronze and magnesium

Speed Chart

Material	Type	Speed (fnm)	Material	Type	Speed (fnm)	Material	Type	Speed (fnm)	Material	Type	Speed (fnm)
Carbon Steel	1008-1035	300	Chrome Vanadium Steel	6117-6120	230	Stainless Steel	201 202 302	115	Nickel Base - Alloys -	Monel	(ipiii)
	1040-1095	200		6145-6152	200		304, 321, 347	115		125-200 BHN	100
Free Machine - Steels -	1108-1132	340	Silicon Steel –	9255-9260	190		303. 303F. 440F	125		R Monel	140
	1212-1213	340		9261-9262	175		443	125		145-180 BHN	140
	1137-1151	275	High-Speed Tool Steel	T1, T2	130		308-310	80		K Monel	80
Manganese Steel	1000 1045	220		T4, T5, T6, T8	100		314-317, 330	80		100-210 BHN	00
	1320-1345	220		T15	75		410, 420, 420F	145		K R Monel Inconel	95
Nickel Steel	2317	260		M1	150		416, 430F	175		Inconel X	80
	2330-2345	200		M2, M3	100		430, 446	90		Hastelloy A	110
	2512-2517	190		M4, M10, M15	85		440 A, B, C	105		210-260 BHN	100
Nickel Chrome	3115-3130	250		M42, M43	85		17-4PH, 17-7PH	75		Hastelloy B 230-270 RHN	
	3135-3150	250	Die Steels	A2	190	Copper Base Alloys	Aluminum Bronze	400		185-250 BHN	90
Molybdenum	3310-3315	190		D2, D3	110		70-90 BHN	100	0 0 0 0 0 Titanium Alloys	Mst 6al-4V	100
	4017-4042	270		D7	80		Alum Bronze	170		310-360 BHN	
Steel	4047-4068	220		01, 02, 06	200		190-220 BHN			BC 130 B	
Chrome Moly	4130-4140	250	Carbon Tool Steel	W1	220		Phosphur Bronze	400		290-330 BHN	100
Steel	4142-4150	210		•••			5-8%, 60-100 BHN			Ti-140A	90
Nickel Chrome Moly Steel	4317-4340	220	Hot Work Steel Shock Resisting Tool Steel Special Purpose Tool Steel	H-12, H-21	180		FINDSPITULE BLONDE	170		300-330 BHN	
	8615-8645	220		H-22, H-25	160		Manganoso Bronzo			T 150A 325-350 BHN	90
	8715-8750	220		S-1	190		90-120 BHN				
	9437-9445	230		S-2, S-5	145		Silicone Bronze			99% Pure Titanium	90
	9747-9763	230		L-6, L-7	160		70-100 BHN	325	270-315 BHN		
	9840-9850	230					Silicone Bronze	170			
	4608-4640	220					180-210 BHN	170			
Steel	4812-4820	190					Beryllium Copper	075			
Chrome Steel	5045-5046	250					#25, 100-120 BHN	275			
	5120-5135	250					Beryllium Copper	225			
	5140-5160	230					#25, 220-250 BHN	220			
	50100-52100	170					Beryllium Copper #25, 310-340 BHN	140			

Wheel

How to use this chart:

- 1. Locate the length of cut in inches on the outside circle (for millimeters use the inside circle).
 - A. The length of the cut is the distance that any tooth of the blade is in contact with the work as it passes once through the cut.
 - B. For solid round stock, the diameter is the length of the cut
 - C. For angles, channels, I-beams, tubular pieces, pipe, and hollow or irregular shapes, the length of cut is found by dividing the cross-sectional area of the cut by the distance the blade needs to travel to finish the cut.

2. Find the tooth specification that aligns with the length, on the ring corresponding with the material shape.

Tooth Selection

For best results, the correct number of teeth on the workpiece is of utmost importance. For mild materials, the 3–6–12–24 rule applies. For hard materials, the 6–12–24–48 rule applies.

Vise Loading and Work-Holding Positions

Always tip angles so blade cuts largest cross section.

Angle Iron (Multiples)

Square Tube

Nesting More efficient than stacking (when cutting rounds, tack-weld end together to prevent rolling)

Break-In Procedures

Proper break-in of a saw blade is the single most important step in sawing. A saw blade that is not broken in will not last as long, cut as fast or as straight as one which has been properly broken in. The term break-in might be more correctly called tooth sharpening.

The process of break-in removes the dead sharp point and feather edge and places a fine radius on the tooth tip which allows the chip to shear away from the workpiece more readily and gives the required support to the tooth tip, which undergoes extreme forces in the cutting process.

